新闻动态

         2018年10月26日,蛋白质上海设施质谱系统用户饶子和院士团队在国际顶级学术期刊《科学》(Science)以研究长文的形式在线发表了题为“An electron transfer path connects subunits of a mycobacterial respiratory supercomplex.”的最新研究成果。该项工作基于分枝杆菌能量代谢系统呼吸链超级复合物的高分辨率(3.5Å)冷冻电镜结构,揭示了生命体内一种新的醌氧化与氧还原相偶联的电子传递机制。同时,也是首次通过结构生物学的研究,发现超氧化物歧化酶(superoxidedismutase,SOD)直接参与呼吸链系统氧化还原酶超级复合物的组装,并协同工作的现象。

 

图一:分枝杆菌呼吸链超级复合物CIII2CIV2SOD2的3.5Å分辨率冷冻电镜结构

 

        作为全球头号传染性疾病,结核病的致病菌结核分枝杆菌近年来表现出日渐严重的耐药性,耐多药结核甚至极端耐药结核已经成为威胁人类健康的重大挑战。切断致病菌的能量补给“线路”,使其“饥饿致死”,成为一种应对耐药结核的新思路。然而,“摸清”致病菌的能量代谢路径至关重要。近日,南开大学饶子和院士团队联合国内外多家科研机构开展的一项研究,破解了结核分支杆菌能量代谢的奥秘,为抗击耐药结核的新药研发奠定了重要基础。

        呼吸作用是生命体内最基础的能量代谢活动之一,生命体可以通过呼吸作用将能量物质(糖、氨基酸及脂肪酸等)转化为机体可以直接利用的高能分子三磷酸腺苷(adenosinetriphosphate,ATP)。呼吸作用主要由位于微生物细胞质膜或线粒体内膜上的五个大型跨膜复合物:复合物I(NADH脱氢酶)、复合物II(琥珀酸脱氢酶)、复合物III(醌:细胞色素c氧化还原酶)、复合物IV(细胞色素c氧化酶)和复合物V(ATP合成酶),以及两种电子传递载体醌和细胞色素c共同参与完成,被称为呼吸链。其中,由于复合物I-IV通过电子传递实现氧化还原反应的串联,进而产生驱动复合物V中ATP合成的跨膜质子梯度,其又被称为电子传递链。此前研究表明,呼吸链组分可以进一步聚合组装形成超级复合物,促进其之间串联反应的发生,在能量代谢效率和多种生理过程的调控方面具有重要意义。在高等动物中,呼吸链超级复合物的组装失调与多种疾病的发生紧密相关;而在微生物中,呼吸链超级复合物的阻断则是研发药物抑制其扩增、侵染的重要策略。

         该工作在新药研发方面亦有着重要的意义。据世界卫生组织报道,当前结核病已发展为全球头号感染性疾病,几十年来异烟肼、利福平等药物组合的长期使用,衍生出日渐严重的菌株耐药问题,耐多药结核甚至极端耐药结核已经成为结核病治疗领域最大的挑战之一。而近年研究表明,靶向能量代谢系统能够显著地克服现有药物的耐药问题,其作为治疗耐药结核病的新型药物靶向系统,日渐受到瞩目。2012年获美国FDA加速审批通过,并于2018年3月进入我国市场的首个治疗耐多药结核新药贝达喹啉(Bedaquiline)就是作用于呼吸链系统抑制其能量合成,从而达到杀灭结核杆菌治疗耐药结核的目的。

 

图二:超级复合物中的底物和潜在药物结合位点

 

        本论文的共同第一作者为南开大学在读博士生贡红日、许傲和上海科技大学免疫化学研究所李俊副研究员;中国科学院生物物理研究所王权博士、孙飞研究员和饶子和院士为共同通讯作者。南开大学、中国科学院生物物理研究所、上海科技大学为课题的主要牵头单位,清华大学、中国科技大学、中国科学院生物化学与细胞生物学研究所、中国科学院遗传与发育生物学研究所、天津国际生物医药联合研究院、英国牛津大学、澳大利亚昆士兰大学等单位参与了研究。同时,该工作得到了科技部、中国科学院B类战略性先导科技专项、国家自然科学基金委的项目资助,国家超级计算天津中心以及国家蛋白质科学研究(上海)设施质谱系统(质谱分析)、电镜系统、规模化蛋白质制备系统(超速离心机)的支持,蛋白质设施质谱系统负责人彭超博士提供了部分技术支持。

 

论文链接:http://science.sciencemag.org/content/early/2018/10/24/science.aat8923

上海市浦东新区海科路333号,
电话:021-2077 8500
Email: ncpss@sibcb-ncpss.org